Open
Graph Drawing
Framework

 v. 2022.02 (Dogwood)
 

MaximalFUPS.h
Go to the documentation of this file.
1 
34 #pragma once
35 
36 #include <ogdf/upward/FUPSModule.h>
37 
38 namespace ogdf {
39 
40 class MaximalFUPS : public FUPSModule {
41 public:
42  //constructor
44 
45 private:
46  int m_timelimit;
47 
48 protected:
49  Module::ReturnType doCall(UpwardPlanRep &UPR, List<edge> &delEdges) override;
50 
51 public:
52 #if 0
53  int computeMFUPS(GraphCopy &GC);
54 #endif
55  int getTimelimit() { return m_timelimit; }
56  void setTimelimit(int timelimit) { m_timelimit = timelimit; }
57 };
58 
59 }
ogdf
The namespace for all OGDF objects.
Definition: AugmentationModule.h:36
ogdf::MaximalFUPS::getTimelimit
int getTimelimit()
Definition: MaximalFUPS.h:55
ogdf::GraphCopy
Copies of graphs supporting edge splitting.
Definition: GraphCopy.h:255
ogdf::MaximalFUPS::doCall
Module::ReturnType doCall(UpwardPlanRep &UPR, List< edge > &delEdges) override
Computes a feasible upward planar subgraph of the input graph.
ogdf::List< edge >
ogdf::MaximalFUPS::setTimelimit
void setTimelimit(int timelimit)
Definition: MaximalFUPS.h:56
ogdf::MaximalFUPS::m_timelimit
int m_timelimit
Definition: MaximalFUPS.h:43
FUPSModule.h
Declaration of Feasible Upward Planar Subgraph (FUPS) Module, an interface for subgraph computation.
ogdf::MaximalFUPS
Definition: MaximalFUPS.h:40
ogdf::MaximalFUPS::MaximalFUPS
MaximalFUPS()
Definition: MaximalFUPS.h:43
ogdf::FUPSModule
Interface for feasible upward planar subgraph algorithms.
Definition: FUPSModule.h:43
ogdf::UpwardPlanRep
Upward planarized representations (of a connected component) of a graph.
Definition: UpwardPlanRep.h:51
ogdf::Module::ReturnType
ReturnType
The return type of a module.
Definition: Module.h:51