Representation of proper hierarchies used by Sugiyama-layout. More...
#include <ogdf/layered/Hierarchy.h>
Public Member Functions | |
Hierarchy () | |
Creates an empty hierarchy. | |
Hierarchy (const Graph &G, const NodeArray< int > &rank) | |
Creates an hierarchy of graph G with node ranks rank . | |
~Hierarchy () | |
void | createEmpty (const Graph &G) |
void | initByNodes (const List< node > &nodes, EdgeArray< edge > &eCopy, const NodeArray< int > &rank) |
bool | isLongEdgeDummy (node v) const |
int | maxRank () const |
operator const GraphCopy & () const | |
Conversion to const GraphCopy reference. | |
int | rank (node v) const |
Returns the rank (level) of node v . | |
int | size (int i) const |
Private Member Functions | |
void | doInit (const NodeArray< int > &rank) |
Private Attributes | |
GraphCopy | m_GC |
The graph copy representing the topology of the proper hierarchy. | |
NodeArray< int > | m_rank |
The rank (level) of a node. | |
Array< int > | m_size |
Friends | |
class | LayerBasedUPRLayout |
Representation of proper hierarchies used by Sugiyama-layout.
Definition at line 43 of file Hierarchy.h.
|
inline |
Creates an empty hierarchy.
Definition at line 52 of file Hierarchy.h.
Creates an hierarchy of graph G
with node ranks rank
.
|
inline |
Definition at line 58 of file Hierarchy.h.
void ogdf::Hierarchy::initByNodes | ( | const List< node > & | nodes, |
EdgeArray< edge > & | eCopy, | ||
const NodeArray< int > & | rank | ||
) |
Definition at line 73 of file Hierarchy.h.
|
inline |
Definition at line 69 of file Hierarchy.h.
Conversion to const GraphCopy reference.
Definition at line 64 of file Hierarchy.h.
Returns the rank (level) of node v
.
Definition at line 67 of file Hierarchy.h.
Definition at line 71 of file Hierarchy.h.
|
friend |
Definition at line 44 of file Hierarchy.h.
|
private |
The graph copy representing the topology of the proper hierarchy.
Definition at line 46 of file Hierarchy.h.
The rank (level) of a node.
Definition at line 47 of file Hierarchy.h.
Definition at line 48 of file Hierarchy.h.